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ABSTRACT

When an electron beam is apertured, the transmitted beam current is the product 

of the incident beam current density and the aperture area.  Space charge forces generally 

cause an increase in incident beam current to result in an increase in incident beam spot 

size.  Under certain circumstances, the spot size will increase faster than the current, 

resulting in a decrease in current extracted from the aperture.  When using a gridded 

electron gun, this can give rise to negative transconductance.  In this paper, we explore 

this effect in the case of an intense beam propagating in a uniform focusing channel.  We 

show that proper placement of the aperture can decouple the current extracted from the 

aperture from fluctuations in the source current, and that apertures can serve to alter 

longitudinal space charge wave propagation by changing the relative contribution of 

velocity and current modulation present in the beam.



2

1.  Introduction

Apertures, the simplest means for controlling electron beams, have been used 

since the earliest research on cathode rays [1].  They remain in use today to alter beam 

current and intensity [2], to affect beam transverse and longitudinal profiles [3-5], for 

transverse focusing [6], and in beam diagnostics [7,8].  At the most fundamental level, an 

aperture produces an output beam whose current is proportional to the current density of 

the incident beam, provided that the incident beam size is larger than the aperture.  As the

incident beam current is changed, the size of the beam striking the aperture will generally 

also change.  Under certain conditions, space charge can cause the beam cross-sectional 

area to increase faster than the beam current, so that the incident current density and the 

extracted current both decrease. For a gridded electron gun, this will mean that as the 

grid voltage is made more positive with respect to the cathode, the current extracted from 

the aperture will decrease, rather than increase as expected.  Such a system can be viewed 

as exhibiting a negative value of the transconductance

GK
Am V

Ig
∂
∂

= 3
, , (1)

where 3I is the current extracted from the aperture, GKV is the grid-cathode voltage, and 

the subscript A denotes the transconductance of the aperture-gun system.  By analogy 

with triodes, the transconductance mg of an unapertured electron gun is positive, and is 

proportional to the cube-root of the beam current [9].  For the general axisymmetric

transport system shown in Figure 1, the transconductance Amg , of the aperture-gun 

system is related to the transconductance mg of the unapertured gun by
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where ( )12 Ir is the beam radius incident on the aperture, 3r is the aperture radius, and 

( )GKVI1 is the current extracted from the gun [10].  The ratio 13, // IIgg mAm ∂∂= denotes 

the change in the transmitted current resulting from a change in the incident current, and 

retains this interpretation even when the beam is not extracted from a gridded gun.  The 

function ( )12 Ir is determined by the details of the transport system between the gun and 

aperture.  We previously considered the case of an intense beam expanding radially under 

space charge forces in the absence of transverse focusing, and showed that when 

apertured it can exhibit negative transconductance [10].  In this paper, we will apply these 

concepts to an intense, axisymmetric electron beam propagating in a uniform focusing 

channel, and consider the effects of the apertures on space charge waves propagating in 

the beam.

2. Uniform Focusing, Mismatch, and Apertures.

A. Envelope Oscillations.

We begin with some preparatory comments on matching and intense beams 

before considering the beam behavior at several locations along a focusing channel.  

Consider an intense beam of current 1I injected on axis into a uniform axial magnetic 

field with transverse focusing strength [11] γβmcqBk 2/0 = , where q is the electron 

charge, B is the magnetic induction, m is the electron mass, c is the speed of light, and 

β and γ are the relativistic factors.  In the limit of negligible emittance, this beam will 

be matched if it is injected with zero divergence ( 0/1 =dsdr ) and with a radius Bar =1 , 

where 
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0k
KaB = (4)

is the Brillouin radius, 

33
0

12
γβI

IK = (5)

is the generalized perveance, and 0I is the characteristic current (17 kA for electrons)

[11].  This matched beam will continue to propagate through the focusing channel 

without change in radius.  For a given initial radius, beam energy, and focusing channel 

strength, there is only one choice of beam current that will result in a matched beam;  call 

this value the matched current MI .  If the current is now changed from MI to a new value 

I , the beam will undergo mismatch oscillations about the new equilibrium radius )(IaB

calculated from Eqs. (4) and (5) but using the new current I . If the amplitude of the 

mismatch oscillation is small1, the oscillation is simple harmonic motion, described by a 

sine function.  In this limit, the envelope mismatch wavelength is [11]
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Here, Ba is the new equilibrium radius.  The quantity 22
0/ BakK is known as the intensity 

parameter, and varies from 0 in the limit of negligible space charge to 1 in the limit of 

neglible emittance [2].  So the envelope oscillation wavelength for our intense beam

becomes

Bq
mc
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γβ

π
π

λ 22
2
2

0

== . (7)

  
1 For this discussion, we take "small" to mean a mismatch oscillation of less than 10% of the beam radius, 
which limits changes in the beam current to less than 20%.  
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This wavelength depends only on the magnetic field and beam energy, and not on the 

beam current.  

B. Beam at .0=s

First, consider a beam with initial radius 1r , which is matched for a current MI .  If 

the current is increased or decreased, the beam will undergo mismatch oscillations.  

However, the radius at injection, 1r , is an initial condition which is independent of the 

beam current.  The beam radius at 0=s will always be 1r , and due to the periodic nature 

of the mismatch oscillation, the beam radius in the focusing channel ( 2r ) will return to 

this value after traveling integer multiples of the mismatch wavelength (Fig. 2).  

Referring to Eq. (2), this means that 0/ 12 =∂∂ Ir at these locations, so that if an aperture 

of radius 3r is placed there, the system transconductance becomes

2
1

2
3

, r
rgg mAm = . (8)  

The system transconductance at these locations does not depend on beam current, will 

always be positive, and will always be less than that of the unapertured beam.

C.  Beam at .
2
1

es λ=

Now, consider the beam at one-half envelope wavelength downstream from the 

point of injection.  This is the location of the maximum beam radius if the beam current 

exceeds the matched current, and the location of the beam waist if the current is less than 

the matched current.  In either case, the beam radius at es λ
2
1

= will be the sum of the 
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equilibrium radius ( )( 1IaB ), and the difference between the equilibrium and injection 

radii ( 11)( rIaB − ).  So

112 )(2 rIar B −= , (9)

which depends on the actual beam current through the Brillouin radius.  The beam will 

repeat this condition once every wavelength at ...
2
5,

2
3,

2
1

eees λλλ= .  If the beam is 

apertured at these locations, Eqs. (2), (4), (5), and (9) can be used to find the system

transconductance 
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(10)  Since 1r is the Brillioun radius for the matched current MI , Eqs. (4), (5), and 

(10) give 
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This transconductance will be negative provided 4/MII ≥ ;  in the limit of small changes 

in beam current MII →1 , so that

2
1

2
3

, r
rgg mAm −→ . (12)

D.  Beam at es λ
4
1

=

Twice in each envelope oscillation period (at ...
4
5,

4
3,

4
1

eees λλλ= ), the local beam 

radius will be exactly equal to the Brillouin radius, Bar =2 .  Since the Brillouin radius 

depends on the square root of the beam current, the current density at these locations will 
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always stay the same -- the change in beam current is exactly counteracted by the change 

in beam cross-sectional area.  This gives a transconductance of the apertured beam of 

0, =Amg . (13)

This is an interesting result, because it means than an aperture placed at these locations

will serve to isolate everything downstream of the aperture from beam current variations 

produced in the source.  Like all results discussed in this paper, this is true regardless of 

whether the beam is produced from a gridded gun or by some other means.  In the latter 

case, the source transconductance GKm VIg ∂∂= /1 can be replaced by the derivative of 

beam current with respect to some other control variable, such as laser intensity for a 

photocathode.

E. Limitations.

Equation (2) is only valid if the incident beam radius is larger than the aperture 

radius, 32 rr > .  If this does not hold, the entire beam passes through the aperture and 

mAm gg =, .  For 0=s , and similar locations, this requirement is equivalent to 

1, <
m

Am

g
g

. (14)

For es λ= , and similar locations, this requirement becomes 13 2 rar B −< , or (using Eq. 

(2))

M

m

Am

I
Ig

g

21

1,

−
> . (15)

These limiting curves are plotted in Fig. 3, along with the mAm gg /, curves for several 

values of 13 / rr .
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3. Application to Space Charge Waves

Consider a beam arriving at the aperture with current 

)()( 10,11 tiItI += (16)

and velocity

)()( 11 tvctV += β , (17)

where the current modulation

)()( 0,111 thIti η= (18)

and the velocity modulation

)()( 11 thctv βδ= (19)

are small perturbations compared to the unmodulated current 0,1I and velocity βc , 1η

and 1δ define the strengths of the current and velocity modulation, and )(th is a 

dimensionless function varying between 1 and 0 which defines the shape of the 

modulation.  Such modulations will launch fast and slow space charge waves.  The 

behavior of these waves is governed by the ratio δη / [12], which for a gridded electron 

gun depends on the anode, cathode, and grid voltages, the gun's mode of operation, and 

its amplification factor [13]. The function )(th also plays a role in determining the 

nature of conversion between the kinetic energy and potential energy associated with the 

waves as they evolve [14].

Small-amplitude current modulation of the type discussed here will cause portions 

of the beam to have more or less than the matched current, and therefore to undergo 

mismatch oscillations.  If the current in each slice of the beam is conserved, each slice 

can be treated independently and assumed to have a mismatch oscillation amplitude 



9

based solely on the current in that slice, so that the results of the previous section can be 

applied to the modulated beam.  Space charge wave propagation will change the current 

in each slice of the beam, but such longitudinal evolution of the beam occurs much more 

slowly than changes in the beam envelope.  Therefore, we now assume that the beam 

arrives at an aperture which is sufficiently close to the gun so that no appreciable 

evolution of the modulation has occurred due to propagation of the space charge waves.  

Eq. (2) defines the ratio of the apertured transconductance to the transconductance of the 

unapertured gun, which can be rewritten

ti
ti
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VI
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g
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If the modulation of the beam emerging from the aperture is similarly given by

)()( 0,333 thIti η= , (23)

then
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The current ratio in this equation is just the ratio of the steady-state beam area incident on 

the aperture to the area of the aperture itself, so this equation becomes
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in which the incident beam radius is denoted by a capital letter to indicate that it is the 

steady-state value corresponding to the unmodulated beam.  Since the aperture has no 

effect on the velocity perturbation in the beam, the role of the aperture is to change the 

value of δη / , and therefore to change the nature of the space charge wave evolution 

downstream of the aperture.  

For an intense beam propagating in a uniform focusing channel, as discussed in 

the previous sections, the change in δη / , and therefore the downstream behavior of the 

space charge waves, will depend on the location of the aperture in the channel, and on the 

steady-state current in the upstream beam (which will also determine the incident beam 

radius, 2R ).  Assume that the steady-state incident beam is matched to the focusing 

channel, so that BaRr == 21 .  If the beam is apertured at the injection point ( 0=s ), or 

integer multiples of eλ downstream, the downsteam current perturbation strength will be 

unchanged.  From Eqs. (8) and (25):

13 ηη = . (26)

If the beam is apertured at one half wavelength from injection, or integer multiples of eλ

thereafter, the downstream current perturbation strength from Eqs. (12) and (25) will be

13 ηη −= . (27)

The negative transconductance effect at this location serves to invert the current 

modulation in the beam.  And if the beam is apertured at 4/es λ= , or similar locations, 

the downstream current perturbation strength from Eqs. (13) and (25) will be
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03 =η . (28)

In this case, the aperture will convert a beam with an arbitrary combination of current and 

velocity modulation into a beam having pure velocity modulation.  The resulting 

velocity-modulated beam will carry fast and slow space charge waves with current 

components having equal magnitudes, but opposite signs2 [12].  This condition can only 

be approximated by operation of a gridded gun in saturation mode [13].  

Note that in Eqs. (26) - (28), there is no dependence on the relative sizes of the 

aperture and the incident beam.  Simply increasing the aperture size changes both the 

amount of unperturbed current 0,3I and the amount of perturbed current )(3 ti passing 

through the aperture, and therefore has no effect on 3η , which is essentially the ratio of 

those currents.  Nevertheless, the requirement that 32 rr > still holds for Eqs. (27) and 

(28);  if it is violated, the entire beam passes through the aperture, and 13 ηη = in all

cases.

Finally, note that because the aperture allows the transverse envelope oscillations 

to affect the nature of the longitudinal space charge waves, these effects can be 

considered to be a form of transverse-longitudinal coupling.  However, this is a 

fundamentally different type of coupling than the more familiar dependence of the space 

charge wave speed on the beam radius, which affects beam end erosion [15] as well as 

fast and slow space charge wave propagation [12].  Experiments at the University of

Maryland have confirmed that the latter type of coupling is very weak for small changes 

  
2 We have assumed that the beam extracted from the aperture remains space charge dominated.  If the 
aperture is sufficiently small, this will no longer be the case.
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in beam current, and that the coupling from small-amplitude mismatch or breathing-mode 

oscillations is negligible [16].

4.  Conclusions.

We have shown that, with proper placement of an aperture in a uniform focusing 

channel, the current extracted from the aperture can be made to increase, decrease, or 

remain unchanged when the current incident on it is increasing.  In the context of a 

gridded electron gun, this is interpreted as a positive, negative, or zero transconductance.  

This effect can alter the relative strengths of the velocity and current modulation present 

on an intense beam, which will affect the behavior of space charge waves on the beam 

emerging from the aperture.  Of particular importance is the observation that by placing 

the aperture at locations where the beam radius is always equal to the Brillouin radius, the 

current extracted from the aperture will remain constant despite fluctuations in the current 

extracted from the source.  This technique may be of considerable use in the design of 

accelerators and diagnostics using or measuring intense beams.

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence 

Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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Figure 1. Axisymmetric beam transport system with aperture.
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Figure 2.  Beam envelope for MII = (solid), MII > (dot), and MII < (dash).  A and B

refer to the two families of curves in Figure 3.
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Fig. 3.  Relative transconductance ratio ( mAm gg /, ) plotted as a function of normalized 

current ( MII / ) for several values of 23 / rr .  The curves in group A are for 0=s from Eq. 

(8) and the curves in group B are for 2/es λ= as calculated from Eq. (11).  The shaded 

regions are prohibited due to violation of the requirement 23 rr < .  These regions are 

bounded by the dashed curves, plotted from Eqs. (14) and (15).


